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Abstract
We discuss the logical implementation of quantum gates and Boolean functions
in the framework of quantum adiabatic method, which uses the language of
ground states, spectral gaps and Hamiltonians instead of the standard unitary
transformation language.

PACS number: 03.67.Lx

1. Introduction

Recently, a newer subfield emerged by new works addressing the idea of developing quantum
algorithms based on adiabatic evolution [1–3]. In the adiabatic quantum computation model,
a computational procedure is described by the continuous time evolution of a time-dependent
Hamiltonian. Here, we discuss the logical implementation of quantum gates and Boolean
functions in the framework of adiabatic quantum method, which uses the language of ground
states, spectral gaps and Hamiltonians instead of the standard unitary transformation language.
This approach is legitimate because a quantum gate represents a device which performs a
unitary transformation on selected qubits in a fixed period of time, using limited energetic
resources, and this aspect is often neglected in the standard unitary gate language [4].

2. The adiabatic theorem

Consider a quantum system in a state |ψ(t)〉, which evolves according to the Schrödinger
equation

i
d

dt
|ψ(t)〉 = Ĥ (t)|ψ(t)〉 (1)

where Ĥ (t) is the Hamiltonian of the system (we let h̄ = 1). To state the adiabatic theorem, it
is convenient and traditional to work with a re-scaled time s = t/T where T is the total time
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(or delay schedule). The Schrödinger equation restated in terms of the re-scaled time s then
reads

i
d

ds
|ψ(s)〉 = T Ĥ (s)|ψ(s)〉. (2)

The adiabatic theorem refers to a property of the states of the energy spectrum of Ĥ (s)

[5, 6]. For the sake of simplicity we shall suppose the spectrum of Ĥ (s) to be entirely discrete.
Also, we assume that the quantum system corresponds to a set of n qubits. In addition we
suppose that

1. the eigenvalues Ej(s) and the associated eigenstates |ξj (s)〉, j = 0, . . . , 2n − 1, of Ĥ (s)

are continuous and derivable functions of s ∈ (0, 1);
2. the eigenvalues of Ĥ (s) remains distinct throughout the transition period s ∈

(0, 1): Ej(s) �= Ek(s),∀j �= k.

The second condition is equivalent to the ordering condition: E0(s) < E1(s) < · · · <

EN(s). We say that |ξ0(s)〉 is the groundstate, |ξ1(s)〉 is the first excited state and |ξN(s)〉 is
the Nth excited state of the system.

The Hamiltonian of the system is therefore given by

Ĥ (s) =
N∑

j=0

Ej(s)P̂ j (s) (3)

where N = 2n − 1, and P̂ j (s) = |ξj (s)〉〈ξj (s)| is the projector onto the subspace of
Ej(s). The Hamiltonian evolution from Ĥ (0) to Ĥ (1) induces the unitary transformation
ÛT (the evolution operator). The evolution operator ÛT (s) satisfies the equation

i
d

ds
ÛT (s) = T Ĥ (s)ÛT (s). (4)

The adiabatic theorem states that ÛT (s) has the following asymptotic property:

lim
T →∞

ÛT (s)P̂ j (0) = P̂ j (s) lim
T →∞

ÛT (s) j = 0, . . . , N. (5)

Thus, if |j 〉 = |ξj (0)〉 is an eigenvector of Ĥ (0) belonging to the eigenvalue Ej(s), then the
vector ÛT (s)P̂ j (0)|j 〉 = ÛT (s)|j 〉 tends toward a vector of the subspace of Ej(s) when
T → ∞.

It is useful to estimate the minimum delay schedule T that it takes for this evolution to be
adiabatic [7]. The crucial quantities for this transformation to be adiabatic are the minimum
gap between the eigenstates

δmin = min
j �=k

min
0�s�1

[Ej(s) − Ek(s)] (6)

and the maximum rate at which the Hamiltonian can be modified

�max = max
s∈[0,1]

∥∥∥∥ d

ds
Ĥ (s)

∥∥∥∥
2

. (7)

It can be shown that a minimum delay schedule T with

T = �max

εδ2
min

(8)

where 0 < ε � 1, is sufficiently slow for the adiabatic evolution from Ĥ (0) to Ĥ (1).
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3. Adiabatic quantum gates

3.1. Hadamard gate

Let us consider the case of the Hadamard gate

W = 1√
2

[
1 1
1 −1

]
(9)

which acts on a single qubit as following:

W |0〉 = 1√
2
(|0〉 + |1〉) W |1〉 = 1√

2
(|0〉 − |1〉). (10)

Now, let us consider the following Hamiltonian:

Ĥ (s) = (1 − s)Ĥ 0 + sĤ 1 (11)

where

Ĥ 0 = −E|0〉〈0| + E|1〉〈1| (12)

and

Ĥ 1 = −E

2
(|0〉 + |1〉)(〈0| + 〈1|) +

E

2
(|0〉 − |1〉)(〈0| − 〈1|). (13)

It is convenient to choose E = 1. The initial Hamiltonian Ĥ 0 has the ground state |ξ0(0)〉 = |0〉
with E0(0) = −1, and the excited state |ξ1(0)〉 = |1〉 with E1(0) = 1. The final Hamiltonian
Ĥ 1 has the ground state |ξ0(1)〉 = 1√

2
(|0〉 + |1〉) with E0(1) = −1, and the excited state

|ξ1(0)〉 = 1√
2
(|0〉 − |1〉) with E1(1) = 1. Thus, if the conditions from the adiabatic theorem

are satisfied, one obtains the results corresponding to the Hadamard gate.
One can easily calculate the energy gap and the matrix element as functions of s:

δ(s) = 2
√

1 − 2s + 2s2 (14)

�(s) =
∣∣∣∣〈ξ1(s)|dĤ

ds
|ξ0(s)〉

∣∣∣∣
= 2s√[

s2 +
(
1 − s + 1

2δ(s)
)2][

s2 +
(
1 − s − 1

2δ(s)
)2] . (15)

The gap δ(s) and the matrix element �(s) are smooth functions for s ∈ [0, 1]. The extreme
values are obtained for s = 1/2: δmin = δ(1/2) = √

2,�max = �(1/2) = √
2. Thus, the

minimum delay schedule for the adiabatic Hadamard gate is T = 1√
2
ε−1.

3.2. Controlled-NOT gate

The prototypical controlled operation is the controlled-NOT (CNOT). CNOT is a quantum
gate with two input qubits, known as the control qubit |c〉 and target qubit |t〉, respectively. In
terms of the computational basis, the action of the CNOT is given by

|c〉|t〉 → |c〉|c ⊕ t〉 (16)

where ⊕ is the modulo 2 addition. That is if the control qubit is set to |1〉 then the target qubit
is flipped, otherwise the target qubit is left alone.

We consider the following Hamiltonian:

Ĥ (s) = (1 − s)Ĥ 0 + sĤ 1 + As(1 − s)Ĥ 01 (17)



L270 Letter to the Editor

where A is a constant

Ĥ 0 = E3|00〉〈00| + E2|01〉〈01| + E1|10〉〈10| + E0|11〉〈11| (18)

Ĥ 1 = E3|00〉〈00| + E2|01〉〈01| + E1 |11〉 〈11| + E0|10〉〈10| (19)

and

Ĥ 01 = (E1 − E0) (|10〉〈11| + |11〉〈10|) . (20)

The extra piece of the Hamiltonian, Ĥ 01, is turned off at the beginning and end of the evolution.
In order to simplify the description we choose Ek = k, where k = 0, 1, 2, 3.

The first two eigenvalues of the Hamiltonian are

E0,1(s) = 1
2

(
1 ∓

√
1 − 4s + 4(1 + A2)s2 − 8A2s3 + 4A2s4

)
. (21)

If A = 0 then E0(s) = s and E1(s) = (1 − s) and the gap is δ01(s) = (1 − 2s). Therefore, the
adiabaticity condition cannot be satisfied because δmin = δ01(1/2) = 0. Thus, we must have
A �= 0. It is convenient to choose A = 1. In this case, the eigenvalues are E0(s) = s(1 − s),

E1(s) = [1 − s(1 − s)], E2 = 2, E3 = 3. The minimum gap is δmin = δ01(1/2) = 1/2. It
is easy to show that the matrix elements are constant: �01 = 1 and �jk = 0, (j, k) �= (0, 1).
Thus, the minimum delay schedule for the adiabatic CNOT gate is T = 4ε−1.

3.3. Toffoli gate

The Toffoli gate has three input qubits. The first two qubits are control qubits, and they are
unaffected by the action of the Toffoli gate. The third qubit is the target qubit that is flipped if
both control qubits are set to |1〉. So, the effect of the Toffoli gate is described by

|c1〉|c2〉|t〉 → |c1〉|c2〉|c1c2 ⊕ t〉. (22)

The Hamiltonian is similar to that we used for the CNOT gate (19) with A = 1. Here we
have

Ĥ 0 = E7|000〉〈000| + E6|001〉〈001| + E5|010〉〈010| + E4|011〉〈011|
+ E3|100〉〈100| + E2|101〉〈101| + E1|110〉〈110| + E0|111〉〈111| (23)

Ĥ 1 = E7|000〉〈000| + E6|001〉〈001| + E5|010〉〈010| + E4|011〉〈011|
+ E3|100〉〈100| + E2|101〉〈101| + E1|111〉〈111| + E0|110〉〈110| (24)

and

Ĥ 01 = (E1 − E0)(|110〉〈111| + |111〉〈110|). (25)

We assume that Ek = k, where k = 0, . . . , 7. In this case, the eigenvalues are: E0(s) =
s(1 − s), E1(s) = 1 − s(1 − s), Ej = j, j = 2, . . . , 7. The minimum gap is δmin =
δ01(1/2) = 1/2. Also, it is easy to show that the matrix elements are constant: �01 = 1 and
�jk = 0, (j, k) �= (0, 1). Thus, the minimum delay schedule for the adiabatic Toffoli gate is
also T = 4ε−1.
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4. Boolean functions

4.1. One-bit Boolean functions

Let us consider a one-bit Boolean function

f (x) : {0, 1} → {0, 1}. (26)

A convenient way of computing this function in the standard approach is to consider a two
qubit computer which starts in the state |x, y〉. With an appropriate sequence of logic gates
it is possible to transform this state into |x, y ⊕ f (x)〉, where ⊕ indicates addition modulo 2.
The first register is called the ‘data’ register, and the second register the ‘target’ register. If
y = 0, then the final state of the second qubit is just the value f (x). In general, it can be
shown that given a classical circuit for computing f there is a quantum circuit of comparable
efficiency which computes the unitary transformation:

|x, y〉 Uf−→ |x, y ⊕ f (x)〉 (27)

on a quantum computer. However, for computational purposes it is considered a ‘black box’.
Here we show how the one-bit Boolean function (the ‘black box’) can be implemented

using the adiabatic approach to quantum computation. We consider the following Hamiltonian:

Ĥ (s) = (1 − s)Ĥ 0 + sĤ 1 + s(1 − s)Ĥ 01. (28)

The initial Hamiltonian is given by

Ĥ 0 = E0
0 |00〉〈00| + E1

0 |01〉〈01| + E0
1 |10〉〈10| + E1

1 |11〉〈11|. (29)

The final and intermediate Hamiltonians take into account the values of the Boolean
function

Ĥ 1 = [
(1 − f (0))E0

0 + f (0)E1
0

] |00〉〈00| +
[
f (0)E0

0 + (1 − f (0)) E1
0

] |01〉〈01|
+

[
(1 − f (1))E0

1 + f (1)E1
1

] |10〉〈10| +
[
f (1)E0

1 + (1 − f (1))E1
1

] |11〉〈11|
(30)

Ĥ 01 = f (0)
(
E1

0 − E0
0

)
(|00〉〈01| + |01〉〈00|) + f (1)

(
E1

1 − E0
1

)
(|10〉〈11| + |11〉〈10|). (31)

For example, let us consider the function

x =
{

1, x = 0
0, x = 1

(32)

which is equivalent to

|x, y〉 x−→ |x, y ⊕ x〉 . (33)

The final and intermediate Hamiltonians are

Ĥ 1 = E0
0 |01〉〈01| + E1

0 |00〉〈00| + E0
1 |10〉〈10| + E1

1 |11〉〈11| (34)

Ĥ 01 = (
E1

0 − E0
0

)
(|00〉〈01| + |01〉〈00|). (35)

One can see that the computation is achieved by switching the eigenstates |00〉 and |01〉
corresponding to the eigenvlalues E0

0 and E1
0 , respectively. The intermediate Hamiltonian Ĥ 01

makes sure that this switching is done without crossing the eigenvalues during the adiabatic
evolution.
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Now, let us return to the general case. It is convenient to choose Ek = k, where
k = 0, . . . , 3. In this case, the eigenvalues are

E
0,1
0 (s) = 1

2

[
1 ∓

√
1 − 4f (0)s + 4f (0)s2(1 − 2s + s2)

]
E

0,1
1 (s) = 1

2

[
5 ∓

√
1 − 4f (1)s + 4f (1)s2(1 − 2s + s2)

]
.

(36)

The minimum gaps are

δ
0,1
0 (1/2) =

√
1 − 3

4f (0) δ
0,1
1 (1/2) =

√
1 − 3

4f (1). (37)

For f (0) = f (1) = 1 we obtain δmin = 1/2. Also, it is easy to show that the matrix elements
are constant

�i,j
x,y =

{
1, x = y, i �= j

0, x �= y
(38)

where x, y ∈ {0, 1} and i, j ∈ {0, 1}. Thus, the minimum delay schedule for the adiabatic
computation of the one-bit Boolean function is T = 4ε−1.

4.2. n-bit Boolean functions

Let us consider a more general, n-bit Boolean function

f (x) : {0, 1}n → {0, 1} . (39)

This function can be computed with the Hamiltonian (28) where

Ĥ 0 =
2n−1∑
x=0

[
E0

x |x, 0〉〈x, 0| + E1
x |x, 1〉〈x, 1|] (40)

Ĥ 1 =
2n−1∑
x=0

{[
(1 − f (x))E0

x + f (x)E1
x

] |x, 0〉〈x, 0|

+
[
f (x)E0

x + (1 − f (x)) E1
x

] |x, 1〉〈x, 1|} (41)

Ĥ 01 =
2n−1∑
x=0

f (x)
(
E1

x − E0
x

)
(|x, 0〉〈x, 1| + |x, 1〉〈x, 0|). (42)

Assuming that E0
0 = 0, E1

0 = 1, E0
1 = 2, . . . , E0

2n−1 = 2n+1 − 2, E1
2n−1 = 2n+1 − 1, we obtain

the following eigenvalues:

E0,1
x (s) = E0

x + E1
x

2
∓ 1

2

√
1 − 4f (x)s + 4f (x)s2(1 − 2s + s2). (43)

The minimum gaps are

δ0,1
x (1/2) = ∣∣E0

x(1/2) − E1
x(1/2)

∣∣ =
√

1 − 3
4f (x). (44)

For f (x) = 1 we have δmin = 1/2. It can be easily shown that the matrix elements are

�i,j
x,y =

{
1, x = y, i �= j

0, x �= y
(45)

where x, y ∈ {0, 1, . . . , 2n − 1} and i, j ∈ {0, 1}. Thus, the minimum delay schedule for the
adiabatic computation of the n-bit Boolean function is also T = 4ε−1.

The computation is performed by switching between the eigenstates |x, 0〉 and |x, 1〉
corresponding to the eigenvlalues E0

x and E1
x , respectively. The switching depends on the

values of the Boolean function f . The intermediate Hamiltonian Ĥ 01 makes sure that this
switching is done without crossing the eigenvalues during the adiabatic evolution.
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5. Conclusions

It is well known that the Hadamard and Toffoli gates represent the simplest universal set of
gates [8, 9]. The Toffoli gate can perform exactly all classical reversible computation. The
Hadamard gate is all that one needs to add to classical computations in order to achieve
the full quantum computation power, since the Hadamard gate is the Fourier transform over
the group Z2. From a conceptual point of view, this is the simplest and most natural universal
set of gates that one can hope for. Here, we have discussed the logical implementation of
quantum gates and Boolean functions in the framework of quantum adiabatic method, which
uses the language of ground states, spectral gaps and Hamiltonians instead of the standard
unitary transformation language. We have shown that the unitary quantum gates and Boolean
functions can be easily implemented using simple adiabatic Hamiltonians.
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